Multi Drone Task Allocation

Student: Takudzwa Chakanyuka

Supervisor: Prof Antoine Bagula

Co-Superviser: Mr Mehrdad

Ghaziasgar

Overview

- Background
- User requirements
- Requirements Analysis
- Project Plan

Background

- Multi drone task allocation (MDTA) consisting of coordinating a team of drones and assigning them tasks
- This task includes the following subtasks:
 - Target search
 - Task Allocation
 - Drone monitoring

User Requirements

- Target search or visitation
- Drone task allocation
- Drone collision detection
- Restricted area avoidance

Requirements Analysis

- Coordinates of the location
- Drone monitoring
- Optimum path
- Task efficiency

Tools

- Parrot Bebop Drone
- Node.js
- Parrot SDK

http://goo.gl/rPECeJ

Project Plan	
Goal	Date
Conduct a literature review on multi drone task allocation	Term 1
Learn node.js	Term 1 – Term 2
MTDA model design	Term 2
Develop target visitation solution	Term 2
Develop collusion detection solution	Term 2
Develop collusion correction solution	Term 2 – Term 3
Develop task allocation and management solution	Term 2 – Term 3
Implement solutions	Term 3
Run simulations to test solution	Term 4
Run actual field tests	Term 4

References

- R. Zlot, A. (tony Stentz, M. B. Dias, and S. Thayer, "Multi-robot exploration controlled by a market economy," in *Multi-robot exploration controlled by a market economy*, 2002, pp. 3016–3023.
- [2] X. Ding, A. Rahmani, and M. Egerstedt, "Optimal multi-uav convoy protection," in Robot Communication and Coordination, 2009. ROBOCOMM'09. Second International Conference on. IEEE, 2009, pp. 1–6.
- [3] N. Nigam and I. Kroo, "Persistent surveillance using multiple unmanned air vehicles," in Aerospace Conference, 2008 IEEE. IEEE, 2008, pp. 1–14.
- [4] C. T. Cunningham and R. S. Roberts, "An adaptive path planning algorithm for cooperating unmanned air vehicles," in *ICRA*, 2001, pp. 3981–3986.
- [5] W. Zhu and S. Choi, "An auction-based approach with closed-loop bid adjustment to dynamic task allocation in robot teams," in *Proceedings of the world congress on engineering*, vol. 2. IAENG., 2011, pp. 1061–1066.
- [6] M. M. Lehata, "Autonomous drone flight," Published as partial fulfilment of the requirements for the degree of Baccalaureus Scientae (Honours) Computer Science University of the Western Cape, 11 2013.

Questions

